Module
This feature is only available with the --experimental-vm-modules
command flag enabled.
The vm.Module
class provides a low-level interface for using ECMAScript modules in VM contexts. It is the counterpart of the vm.Script
class that closely mirrors Module Record s as defined in the ECMAScript specification.
Unlike vm.Script
however, every vm.Module
object is bound to a context from its creation. Operations on vm.Module
objects are intrinsically asynchronous, in contrast with the synchronous nature of vm.Script
objects. The use of 'async' functions can help with manipulating vm.Module
objects.
Using a vm.Module
object requires three distinct steps: creation/parsing, linking, and evaluation. These three steps are illustrated in the following example.
This implementation lies at a lower level than the ECMAScript Module loader
. There is also no way to interact with the Loader yet, though support is planned.
import vm from 'node:vm';
const contextifiedObject = vm.createContext({
secret: 42,
print: console.log,
});
// Step 1
//
// Create a Module by constructing a new `vm.SourceTextModule` object. This
// parses the provided source text, throwing a `SyntaxError` if anything goes
// wrong. By default, a Module is created in the top context. But here, we
// specify `contextifiedObject` as the context this Module belongs to.
//
// Here, we attempt to obtain the default export from the module "foo", and
// put it into local binding "secret".
const bar = new vm.SourceTextModule(`
import s from 'foo';
s;
print(s);
`, { context: contextifiedObject });
// Step 2
//
// "Link" the imported dependencies of this Module to it.
//
// The provided linking callback (the "linker") accepts two arguments: the
// parent module (`bar` in this case) and the string that is the specifier of
// the imported module. The callback is expected to return a Module that
// corresponds to the provided specifier, with certain requirements documented
// in `module.link()`.
//
// If linking has not started for the returned Module, the same linker
// callback will be called on the returned Module.
//
// Even top-level Modules without dependencies must be explicitly linked. The
// callback provided would never be called, however.
//
// The link() method returns a Promise that will be resolved when all the
// Promises returned by the linker resolve.
//
// Note: This is a contrived example in that the linker function creates a new
// "foo" module every time it is called. In a full-fledged module system, a
// cache would probably be used to avoid duplicated modules.
async function linker(specifier, referencingModule) {
if (specifier === 'foo') {
return new vm.SourceTextModule(`
// The "secret" variable refers to the global variable we added to
// "contextifiedObject" when creating the context.
export default secret;
`, { context: referencingModule.context });
// Using `contextifiedObject` instead of `referencingModule.context`
// here would work as well.
}
throw new Error(`Unable to resolve dependency: ${specifier}`);
}
await bar.link(linker);
// Step 3
//
// Evaluate the Module. The evaluate() method returns a promise which will
// resolve after the module has finished evaluating.
// Prints 42.
await bar.evaluate();
Since
v13.0.0, v12.16.0
Inheritors
Properties
The specifiers of all dependencies of this module. The returned array is frozen to disallow any changes to it.
The identifier of the current module, as set in the constructor.
The current status of the module. Will be one of: