Exposed 0.57.0 Help

SQL Functions

Exposed provides basic support for classic SQL functions. This topic consists of definitions for those functions, and their usage examples. It also explains how to define custom functions.

How to use functions

If you want to retrieve a function result from a query, you have to declare the function as a variable:

val lowerCasedName = FooTable.name.lowerCase() val lowerCasedNames = FooTable.select(lowerCasedName).map { it[lowerCasedName] }

Also, functions could be chained and combined:

val trimmedAndLoweredFullName = Concat(FooTable.firstName, stringLiteral(" "), FooTable.lastName).trim().lowerCase() val fullNames = FooTable.select(trimmedAndLoweredFullName).map { it[trimmedAndLoweredFullName] }

String functions

LowerCase/UpperCase

Returns a lower-cased/upper-cased string value.

val lowerCasedName = FooTable.name.lowerCase() val lowerCasedNames = FooTable.select(lowerCasedName).map { it[lowerCasedName] }

Substring

Returns a substring value from the specified start and with the specified length.

val shortenedName = FooTable.name.substring(start = 1, length = 3) val shortenedNames = FooTable.select(shortenedName).map { it[shortenedName] }

Concat

Returns a string value that concatenates the text representations of all non-null input values, separated by an optional separator.

val userName = concat(stringLiteral("User - "), FooTable.name) val userNames = FooTable.select(userName).map { it[userName] }

Locate

Returns the index of the first occurrence of a specified substring or 0.

val firstAIndex = FooTable.name.locate("a") val firstAIndices = FooTable.select(firstAIndex).map { it[firstAIndex] }

CharLength

Returns the length, measured in characters, or null if the String value is null.

val nameLength = FooTable.name.charLength() val nameLengths = FooTable.select(nameLength).map { it[nameLength] }

Aggregating functions

These functions should be used in queries with groupBy.

Min/Max/Average

Returns minimum/maximum/average value and can be applied to any comparable expression:

val minId = FooTable.id.min() val maxId = FooTable.id.max() val averageId = FooTable.id.avg() val (min, max, avg) = FooTable.select(minId, maxId, averageId).map { Triple(it[minId], it[maxId], it[averageId]) }

Custom functions

If you can't find your most loved function used in your database (as Exposed provides only basic support for classic SQL functions), you can define your own functions.

Since Exposed 0.15.1 there multiple options to define custom functions:

  1. Function without parameters:

val sqrt = FooTable.id.function("SQRT")

In SQL representation it will be SQRT(FooTable.id)

  1. Function with additional parameters:

val replacedName = CustomFunction<String?>("REPLACE", VarCharColumnType(), FooTable.name, stringParam("foo"), stringParam("bar"))

CustomFunction class accepts a function name as a first parameter and the resulting column type as second. After that, you can provide any amount of parameters separated by a comma.

There are also shortcuts for string, long, and datetime functions:

  • CustomStringFunction

  • CustomLongFunction

  • CustomDateTimeFunction

The code above could be simplified to:

val replacedName = CustomStringFunction("REPLACE", FooTable.name, stringParam("foo"), stringParam("bar"))

For example, the following could be used in SQLite to mimic its date() function:

val lastDayOfMonth = CustomDateFunction( "date", FooTable.dateColumn, stringLiteral("start of month"), stringLiteral("+1 month"), stringLiteral("-1 day") )
  1. Function that requires more complex query building:

All functions in Exposed extend the abstract class Function, which takes a column type and allows overriding toQueryBuilder(). This is what CustomFunction actually does, which can be leveraged to create more complex queries.

For example, Exposed provides a trim() function that removes leading and trailing whitespace from a String. In MySQL, this is just the default behavior as specifiers can be provided to limit the trim to either leading or trailing, as well as providing a specific substring other than spaces to remove. The custom function below supports this extended behavior:

enum class TrimSpecifier { BOTH, LEADING, TRAILING } class CustomTrim<T : String?>( val expression: Expression<T>, val toRemove: Expression<T>?, val trimSpecifier: TrimSpecifier ) : Function<T>(TextColumnType()) { override fun toQueryBuilder(queryBuilder: QueryBuilder) { queryBuilder { append("TRIM(") append(trimSpecifier.name) toRemove?.let { +" $it" } append(" FROM ") append(expression) append(")") } } } fun <T : String?> Expression<T>.customTrim( toRemove: Expression<T>? = null, specifier: TrimSpecifier = TrimSpecifier.BOTH ): CustomTrim<T> = CustomTrim(this, toRemove, specifier) transaction { FooTable.insert { it[name] = "xxxbarxxx" } val leadingXTrim = FooTable.name.customTrim(stringLiteral("x"), TrimSpecifier.LEADING) val trailingXTrim = FooTable.name.customTrim(stringLiteral("x"), TrimSpecifier.TRAILING) FooTable.select(leadingXTrim) // barxxx FooTable.select(trailingXTrim) // xxxbar }

Window Functions

Window functions allow calculations across a set of table rows that are related to the current row.

Existing aggregate functions (like sum(), avg()) can be used, as well as new rank and value functions:

  • cumeDist()

  • denseRank()

  • firstValue()

  • lag()

  • lastValue()

  • lead()

  • nthValue()

  • nTile()

  • percentRank()

  • rank()

  • rowNumber()

To use a window function, include the OVER clause by chaining .over() after the function call. A PARTITION BY and ORDER BY clause can be optionally chained using .partitionBy() and .orderBy(), which both take multiple arguments:

FooTable.amount.sum().over().partitionBy(FooTable.year, FooTable.product).orderBy(FooTable.amount) rowNumber().over().partitionBy(FooTable.year, FooTable.product).orderBy(FooTable.amount) FooTable.amount.sum().over().orderBy(FooTable.year to SortOrder.DESC, FooTable.product to SortOrder.ASC_NULLS_FIRST)

Frame clause functions (like rows(), range(), and groups()) are also supported and take a WindowFrameBound option depending on the expected result:

  • WindowFrameBound.currentRow()

  • WindowFrameBound.unboundedPreceding()

  • WindowFrameBound.unboundedFollowing()

  • WindowFrameBound.offsetPreceding()

  • WindowFrameBound.offsetFollowing()

FooTable.amount.sum().over() .partitionBy(FooTable.year, FooTable.product) .orderBy(FooTable.amount) .range(WindowFrameBound.offsetPreceding(2), WindowFrameBound.currentRow())
Last modified: 05 December 2024